III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2023

REFRIGERATION AND AIR CONDITIONING (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

- 2. All parts of Question must be answered in one place.
- BL Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks			
	UNIT-I							
1	a)	Discuss the working of a Carnot refrigerator	L2	CO1	5 M			
		with working substance as air as well as						
		vapor. Derive an expression for its COP.						
	b)	300kg of atmospheric air is circulated per	L3	CO1	9 M			
		hour in a Bell Coleman refrigerator. The air						
		is drawn from the evaporator at temperature						
		8^0 C and 1 bar and then compressed						
		isentropically to 5 bar. It is cooled at this						
		pressure to 28° C and then led to the						
		expander where it expands isentropically						
		down to atmospheric pressure and is						
		discharged to evaporator. Determine the						
		COP of the system. For air take $\gamma = 1.4$ and						
		$C_p = 1.003 \text{ kJ/KgK}.$						
	[OR	[1				
2	a)		L2	CO1	5 M			
		of the Bell-Coleman air cycle.						
	b)	Describe with a schematic diagram and	L2	CO1	9 M			
		draw T-s representation of the processes of						
		Simple air - Evaporative type air craft						
		refrigeration system.						

		UNIT-II					
3	a)	Explain the differences between flooded	L2	CO2	7 M		
		type shell-and-tube evaporator & dry type					
		shell-and-tube evaporator.					
	b)		L3	CO2	7 M		
		20 TR. The condensation and evaporation					
		temperatures are 35° C and -20° C,					
		respectively. Refrigerant is dry and					
		saturated at the entry to the compressor.					
		There is no undercooling of the liquid refrigerant. If the actual COP is 0.7 times					
		the theoretical COP, determine the					
		following: (i) Mass flow rate of refrigerant.					
		(ii) Power required to drive the compressor.					
		(iii) Diameter and stroke of the compressor					
		running at 4 rev/s and $L = D$. Its volumetric					
		efficiency is 80% and is single-acting.					
	1	OR					
4	a)	L L	L2	CO2	7 M		
		working of the Vapour Compression					
		Refrigeration System. Show the various					
		state points and processes on the T–s					
	b)	diagram.	10	CO2	7 М		
	b)	Discuss the desirable properties of a good	LZ	CO2	7 M		
		refrigerant.					
		UNIT-III					
5	a)	Describe the working of Simple Vapour	L2	CO2	7 M		
		Absorption Refrigeration System.					
	b)	Discuss the working principle of Vortex	L2	CO2	7 M		
		tube refrigeration system with advantages					
		and disadvantages.					
	OR						
6	a)	Explain the working principle of the	L2	CO2	7 M		
		thermoelectric refrigeration system.					

	b)	,	L3	CO2	7 M
		Thomson effect, prove their relation between them.			
		UNIT-IV			
7	a)	Explain in detail about specific humidity and establish the following expression for air vapour mixture $W = 0.622 \frac{P_v}{Pb - P_v}$ where W=specific humidity, P_v =Partial pressure of water Vapour, P_b =partial barometric pressure or total	L3	CO3	6 M
	b)	 pressure. A sling psychrometer reads 40°C DBT and 28°C WBT evaluate the following, (i) Specific Humidity (ii) Relative Humidity (iii) vapour density of air (iv) Dew point temperature (v) Enthalpy of the mixture per kg of dry air either using steam tables or psychrometric chart. 	L3	CO3	8 M
		OR			
8	a)	Establish the expression for by pass factor of heating coil or cooling coil and also establish the relation between the by pass factor and efficiency of the coil.	L3	CO3	6 M
	b)	The atmospheric air at 760mm of Hg, dry bulb temperature 15°C and wet bulb temperature 11°C entering a heating coil whose temperature is 41°C. Assuming by pass factor of heating coil as 0.5, Evaluate the dry bulb temperature, wet bulb temperature and relative humidity of the air leaving the coil. Also determine the sensible heat added to the air per kg of dry air.	L3	CO3	8 M

		UNIT-V			
9	a)	Discuss the factors effecting on human	L2	CO3	7 M
		comfort in air conditioning processes.			
	b)	The following data refer to the summer air	L4	CO3	7 M
		conditioning of a building			
		Outside design conditions= 43° C DBT, 27° C			
		WBT			
		Inside design conditions=25°C DBT, 50%			
		of RH			
		Room sensible heat gain = 84000 kJ/h			
		Room latent heat gain = 21000 kJ/h			
		By-pass factor of the cooling coil $= 0.2$			
		The return air from the room is mixed with			
		the outside air before entry to cooling coil in			
		the ratio of 4:1 by mass. Determine			
		(i) Apparatus dew point of the cooling coil,			
		(ii) entry and exit conditions of air for			
		cooling coil, (iii) fresh air mass flow rate			
		and (iv) refrigeration load on the cooling			
		coil.			
OR					
10	a)		L2	CO3	9 M
		skeleton psychrometric chart			
		i) Heating and Humidification by steam			
		injection			
		ii) Heating and Dehumidification by			
	1-)	adiabatic chemical dehumidification.	Т 1	CO^{2}	2 М
	b)	e	LI	CO3	3 M
		sketch.	10	CO^2	2 14
	c)		LZ	CO3	2 M
		similar fan? Discuss the various fan			
		similarity laws.			